content / mathematics / goedel_incompleteness
Wikenigma - an Encyclopedia of Unknowns Wikenigma - an Encyclopedia of the Unknown
Gödel's incompleteness theorems
Gödel proved that, within any axiomatic framework for mathematics there are mathematically true statements that we will never be able to prove are true within that framework."
Source : Marcus du Sautoy, What We Cannot Know: Explorations at the Edge of Knowledge
Gödel developed two theorems dealing with the subject :
The first incompleteness theorem states that no consistent system of axioms whose theorems can be listed by an effective procedure (i.e., an algorithm) is capable of proving all truths about the arithmetic of the natural numbers. For any such formal system, there will always be statements about the natural numbers that are true, but that are unprovable within the system.
The second incompleteness theorem, an extension of the first, shows that the system cannot demonstrate its own consistency.
Further info at Wikipedia
Show another (random) article
Suggestions for corrections and ideas for articles are welcomed : Get in touch!
Further resources :