User Tools

    To create and edit articles, please register and log-in

Main Menu : categories & index etc.

Main menu
Click categories to expand


A-Z listingplugin-autotooltip__plain plugin-autotooltip_bigA-Z listing

This is an alphabetical index of all content pages.


Other categories

Utilities

Contact
Register
Sandbox

Also see

Importance Ratings
News
Legal
Donate/Sponsor
Curator's rationale
AI Policy



Twitter feed 𝕏



Feeds + s.e.o. etc.
rss / xml feed
sitemap file
A-Z listing (archived)


Indexed under : Physics / General

Wikenigma - an Encyclopedia of Unknowns Wikenigma - an Encyclopedia of the Unknown

High Temperature Superconductivity

The first 'high-temperature' (defined as above –196.2°C) superconductor was discovered in 1986 by IBM researchers Karl Müller and Johannes Bednorz - for which they were awarded the Nobel Prize in Physics in 1987. Since then many other materials with even higher superconducting temperatures have been identified.

(Superconductivity is a state in which a substance completely loses all electrical resistance - in other words an electrical current can flow through it, for ever, without any losses or heat generation)

Superconductivity itself, in metals, had been previously found in 1911, using mercury cooled by the recently-discovered liquid helium. But it took until 1957 for the phenomenon to be explained via the BCS theory. The theory, however, is only applicable up to around 30 or so degrees above absolute zero.

'High temperature' superconducting remains completely unexplained.

It is one of the biggest challenges of modern times […] in physics. Something like fifteen Nobel laureates have written articles on high temperature superconductivity. I for one know of no other sub-field in physics that has energised or sparked the imagination of so many of the greatest minds.“

Source : Nigel Hussey, professor of experimental condensed matter physics at the university of Bristol, UK, speaking on BBC's In Our Time, podcast, Superconductivity Jan 2023.

It's now widely accepted that an explanation will not be found using models which rely on the (highly predictable) behaviour of single (or paired) electrons. Instead current thinking leans towards as-yet-unknown 'emergent' properties of 'coherent' clouds of quantum-entangled electrons.

Recent progress in the proposed theoretical models can be found at Wikipedia

Room Temperature superconductors :

Since there is no agreed explanation as yet, 'room-temperature' superconductors (which would have the capacity to totally revolutionise human technology) are not ruled out.


Update Oct 2020 : A report of room-temperature superconductivity (at around 15°C) is featured inNature volume 586, pages 373–377(2020) The material tested was H2S + H2 - Unfortunately, for practical applications, the effect only occurs at the extreme pressures of 267 ± 10 gigapascals - only achievable in a diamond anvil-cell.

IMPORTANT NOTE : This paper cited above has now been 'retracted' by Nature due to “concerns regarding the manner in which the data in this paper have been processed and interpreted.”


Update July 2023 : A report of room temperature superconductivity - at normal atmospheric pressure - has been uploaded to arXiv

A joint Korean / US research team say their newly developed crystalline compound - a Cu-doped lead apatite (LA) - has near zero electrical resistance.

See : Superconductor Pb10-xCux(PO4)6O showing levitation at room temperature and atmospheric pressure and mechanism

IMPORTANT NOTE This is not a peer-reviewed paper, and the report has not been confirmed by other research teams. Many superconductivity researchers are currently sceptical about the the published results.


Update Aug 2023 : A research team from the University of Illinois Urbana-Champaign, US, have announced experimental confirmation of a 'plasmon' particle called “Pines' Demon”.

The 'Demon' particles were predicted nearly 70 years ago by US theoretical physicist David Pines. He proposed that the composite particles could form when electrons in different energy bands (in metals) vibrated out-of-phase, leading modulations in the band occupancy. Although formed from electrons, the particles would be mass-less, neutral, and would not interact with light.

They have not been detected experimentally before, perhaps because of their extreme lack of interaction.

Various research groups have previously conjectured that such particles could offer a possible explanation for high temperature superconductivity. (see paper linked below for references). More research, however, is needed to confirm or refute the 'Demon's' possible role.

See Nature Aug 2023


Update Nov. 2023 :

Another recent paper regarding possible room temperature superconductivity, again published in the journal Nature has also been retracted from the journal .


Note: High-temperature superconductivity is another example of a man-made technology in routine use (e.g. in MRI machine coils) but which, as yet, no-one understands.
For other examples see : Lithium-ion batteriesplugin-autotooltip__plain plugin-autotooltip_bigLithium-ion batteries

functionality_unexplained

"Although lithium ion batteries are considered as system of choice for variety of mobile and stationary applications, fundamental knowledge is alarmingly required to uncover the underlying principles controlling the bas…
, Defibrillationplugin-autotooltip__plain plugin-autotooltip_bigDefibrillation

functionality_unexplained

Since the 1960s, electrical heart defibrillators have been routinely used as a treatment for life-threatening cardiac dysrhythmias, especially ventricular fibrillation.

The defibrillators' exact mechanism of action is yet to b…
and Neural Networksplugin-autotooltip__plain plugin-autotooltip_bigNeural Networks

functionality_unexplained

"“Multilayer neural networks are among the most powerful models in machine learning, yet the fundamental reasons for this success defy mathematical understanding.”

Source : Proceedings of the National Academy of Sciences …

Importance Rating


    Please share this page to help promote Wikenigma !

Dear reader : Do you have any suggestions for the site's content?

Ideas for new topics, and suggested additions / corrections for older ones, are always welcome.

If you have skills or interests in a particular field, and have suggestions for Wikenigma, get in touch !


Or, if you'd like to become a regular contributor . . . request a login password. Registered users can edit the entire content of the site, and also create new pages.

( The 'Notes for contributors' section in the main menu has further information and guidelines etc.)

Automatic Translation

You are currently viewing an auto-translated version of Wikenigma

Please be aware that no automatic translation engines are 100% accurate, and so the auto-translated content will very probably feature errors and omissions.

Nevertheless, Wikenigma hopes that the translated content will help to attract a wider global audience.

Show another (random) article

Further resources :

DOKUWIKI IMPLEMENTATION DESIGN BY UNIV.ORG.UK DECEMBER 2023