Please register and log-in to create and edit pages

User Tools

    Please register and log-in to create and edit pages

Site Tools


Main Menu

Main menu
Click categories to expand


A-Z listingplugin-autotooltip__plain plugin-autotooltip_bigA-Z listing

This is an alphabetical index of all content pages.


Other categories

Utilities

Contacts
Register

Also see

Importance Ratings
News
Legal
Donate/Sponsor


Wikenigma supports:


Feeds etc
rss / xml feed
sitemap file
A-Z listing (archived)

Wikenigma - an Encyclopedia of Unknowns Wikenigma - an Encyclopedia of the Unknown

The Gravitational constant

The gravitational attraction between two objects is dependent on the mass of the objects, the distance between them, and the gravitational constant (G).

The masses and distance can vary, but the constant, as the name implies, is always a fixed number.

It was first measured in 1798 by Henry Cavendish, with an accuracy of around 1%. Since then, many more attempts have been made, using very different methods.

The margin of error for the results is not yet clear - the lowest measurement being around 6.66 ×10−11 m3⋅kg−1⋅s−2 and the highest 6.68, or in other words with a margin of error of around 0.3%

Although the error margin might seem small, it has extremely far-reaching consequences for calculations on cosmological scales regarding the beginning and the fate of the universe.

The constant is currently agreed to be an average value, with an accuracy of 0.1%

A further complication is that recent measurements (i.e. in the last 50 years or so) have tended to give values which appear to vary in a cyclic way. Giving rise to speculations that the constant may not in fact be constant. If it is eventually proven that the constant is varying, most of cosmological theory will have to be re-written. Note that many other investigators put the variations down to errors of measurements.

See Wikipedia


Also see Gravityplugin-autotooltip__plain plugin-autotooltip_bigGravity

Although three of the four (known) fundamental forces have been unified by one paradigm called the Standard Model, Gravity remains outside.

Like General Relativity, Gravity appears, so far, not to fit. This doesn't necessarily mean that Standard Model has fai…
and The Fine Structure Constantplugin-autotooltip__plain plugin-autotooltip_bigThe Fine Structure Constant

The Fine Structure Constant, identified by the Greek letter α is a fundamental number used in quantum physics calculations. The current estimate is that it's around 0.00729735256 - or roughly 1/137.

It has been called the
and Physical constantsplugin-autotooltip__plain plugin-autotooltip_bigPhysical constants

Constants variability :

Many physics calculations rely on the assumption that the ‘physical constants’ e.g. light speed, gravity, etc etc are, in fact, constant. Extremely accurate experimental procedures strongly suggest that they (mostly) are. But…


    Share this page :

X

Dear reader : Do you have any suggestions for the site's content?

Ideas for new topics, and suggested additions / corrections for old ones, are always welcome.

If you have skills or interests in a particular field, and have suggestions for Wikenigma, get in touch !


Or, if you'd like to become a regular contributor . . . request a login password. Registered users can edit the entire content of the site, and also create new pages.

( The 'Notes for contributors' section in the main menu has further information and guidelines etc.)

Show another (random) page

DOKUWIKI IMPLEMENTATION DESIGN BY UNIV.ORG.UK AUGUST 2021