Random article ( of 1087 ) Latest updates

Site Tools

content:mathematics:oppermann_conjecture

Oppermann's conjecture

Oppermann's Conjecture concerns the distribution of Prime Numbersplugin-autotooltip__plain plugin-autotooltip_bigPrime Numbers

Since all other whole numbers (except 0) can be produced by multiplying together primes โ they must be considered fundamental.

(1), 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31 &etc

There are an infinite number of primes - as proved by Euclid around 300B.C. (
.

It was first suggested in 1877, and has not been proved or disproved since then.

The conjecture states that : for every integer x > 1, there is at least one prime number between x(x โ 1) and x2, and at least another prime between x2 and x(x + 1).

Put non-mathematically "Is every pair of a square number and a pronic number (both greater than one) separated by at least one prime?"

See : Wikipedia

Also see : Legendre's Conjectureplugin-autotooltip__plain plugin-autotooltip_bigLegendre's Conjecture

Legendre's Conjecture concerns the distribution of Prime Numbers

It asks : "Is there is a prime number between n2 and (n + 1)2 for every positive integer n. squares?"

It was first presented by French mathematician Adrien-Marie Legendre in the early 1800s - and to date has neither been proved or disproved.

Show another (random) article

Suggestions for corrections and ideas for articles are welcomed : Get in touch!

Further resources :