User Tools

    To create and edit articles, please register and log-in

Main Menu : categories & index etc.

Main menu
Click categories to expand


A-Z listingplugin-autotooltip__plain plugin-autotooltip_bigA-Z listing

This is an alphabetical index of all content pages.


Other categories

Utilities

Contact
Register
Sandbox

Also see

Importance Ratings
News
Legal
Donate/Sponsor
Curator's rationale
AI Policy



Twitter feed 𝕏



Feeds + s.e.o. etc.
rss / xml feed
sitemap file
A-Z listing (archived)


Indexed under : Mathematics

Wikenigma - an Encyclopedia of Unknowns Wikenigma - an Encyclopedia of the Unknown

Brocard's problem

Brocard's problem asks to find integer values of n and m for which n! + 1 = m2, where n is the factorial.

Put another way:

Does the equation n!+1 = m2 have integer solutions other than 4, 5, 7?

It was first proposed by French mathematician Henri Brocard 1876.

Brocard found just three solutions : the number pairs [4,5] [5,11] and [7,71].

As yet, no other solutions have been found, even with very extensive computational searches.

It's currently not known if there are or are not any other solutions - and no proof exists either way.

See : Wikipedia

Further technical investigations (2023) : The diagonalization method and Brocard's problem, arXiv, math,1803.09155


Also see : Brocard's conjectureplugin-autotooltip__plain plugin-autotooltip_bigBrocard's conjecture

Brocard's conjecture asserts that there are at least four prime numbers between (pn)2 and (pn+1)2, where pn is the nth prime number, for every n ≥ 2.

It was first suggested by French mathematician Henri Brocard in the late 19th century.


    Please share this page to help promote Wikenigma !

Dear reader : Do you have any suggestions for the site's content?

Ideas for new topics, and suggested additions / corrections for older ones, are always welcome.

If you have skills or interests in a particular field, and have suggestions for Wikenigma, get in touch !


Or, if you'd like to become a regular contributor . . . request a login password. Registered users can edit the entire content of the site, and also create new pages.

( The 'Notes for contributors' section in the main menu has further information and guidelines etc.)

Automatic Translation

You are currently viewing an auto-translated version of Wikenigma

Please be aware that no automatic translation engines are 100% accurate, and so the auto-translated content will very probably feature errors and omissions.

Nevertheless, Wikenigma hopes that the translated content will help to attract a wider global audience.

Show another (random) article

Further resources :

DOKUWIKI IMPLEMENTATION DESIGN BY UNIV.ORG.UK DECEMBER 2023