User Tools

    To create and edit articles, please register and log-in

Main Menu : categories & index etc.

Main menu
Click categories to expand


A-Z listingplugin-autotooltip__plain plugin-autotooltip_bigA-Z listing

This is an alphabetical index of all content pages.


Other categories

Utilities

Contact
Register
Sandbox

Also see

Importance Ratings
News
Legal
Donate/Sponsor
Curator's rationale
AI Policy



Twitter feed ð•



Feeds + s.e.o. etc.
rss / xml feed
sitemap file
A-Z listing (archived)


Indexed under : Life Sciences / Life Itself

Wikenigma - an Encyclopedia of Unknowns Wikenigma - an Encyclopedia of the Unknown

Intrinsically disordered proteins

Before year 2000, it was generally assumed that the way in which proteins 'folded' was the sole key to understanding their function in life-systems. (See :Protein structuringplugin-autotooltip__plain plugin-autotooltip_bigProtein structuring

Genes set the order that amino acids (the chemical building blocks of proteins) appear in the proteins which they code for. But, working from the gene, the form which the protein's 3-D structure will take cannot as yet be predicted. The extremely co…
). Since then, it has been shown that many proteins do not entirely 'fold up' - leaving large sections of the protein chain as coils which appear to be random. This can profoundly affect the way in which they function and influence cellular systems.

It's currently estimated that around 33% of proteins found in cells which have a nucleus are 'Intrinsically Disordered'

It's largely unknown how the disordered sections might influence the proteins' function. Especially as, being unconstrained, they can re-organise and presumably operate in different ways at different times.

See: Wikipedia


Also see : Protein structuringplugin-autotooltip__plain plugin-autotooltip_bigProtein structuring

Genes set the order that amino acids (the chemical building blocks of proteins) appear in the proteins which they code for. But, working from the gene, the form which the protein's 3-D structure will take cannot as yet be predicted. The extremely co…
and Protein Knottingplugin-autotooltip__plain plugin-autotooltip_bigProtein Knotting

Note: This article is an extension of the Protein Folding Problem

"Knotting in proteins was once considered exceedingly rare. However, systematic analyses of solved protein structures over the last two decades have demonstrated the existence of many…


    Please share this page to help promote Wikenigma !

Dear reader : Do you have any suggestions for the site's content?

Ideas for new topics, and suggested additions / corrections for older ones, are always welcome.

If you have skills or interests in a particular field, and have suggestions for Wikenigma, get in touch !


Or, if you'd like to become a regular contributor . . . request a login password. Registered users can edit the entire content of the site, and also create new pages.

( The 'Notes for contributors' section in the main menu has further information and guidelines etc.)

Automatic Translation

You are currently viewing an auto-translated version of Wikenigma

Please be aware that no automatic translation engines are 100% accurate, and so the auto-translated content will very probably feature errors and omissions.

Nevertheless, Wikenigma hopes that the translated content will help to attract a wider global audience.

Show another (random) article

Further resources :

DOKUWIKI IMPLEMENTATION DESIGN BY UNIV.ORG.UK DECEMBER 2023